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Symmetry Characterization of Pimenov's 
Spacetime: A Reformulation of Causality Axioms 
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In modem physics, many theories are formulated in terms of symmetries; 
therefore, if we want to incorporate, e.g., space-time physics into modern physics, 
it is desirable to reformulate space-time physical theories in terms of symmetries. 
In this paper, we provide such a reformulation for an axiomatic theory of 
kinematic causality. 

1. F O R M U L A T I O N  OF  T H E  P R O B L E M  

In modem physics (starting from the discovery of  quarks in the early 
1960s) symmetries are the language in which many physical ideas are formu- 
lated. This is especially true in quantum field theory. Therefore, if we want 
to incorporate other physical formalisms into modem physics, it is desirable 
to translate these other formalisms into the language of  symmetries. This is 
especially important for space-time geometry, which is not well accommo- 
dated with quantum field theory. 

Part of space-time physics is described in terms of  differential equations 
(Einstein's, Brans-Dicke theory, etc). This part can be reformulated in terms 
of  symmetries of  these equations in the sense that we can find enough 
symmetries to uniquely reconstruct the equations; see, e.g., Finkelstein and 
Kreinovich (1985) and Finkelstein et al. (1986). However, differential equa- 
tions have limitations (Misner et  al., 1973): they cannot describe nonsmooth- 
ness due to singularities and nonsmoothness due to quantum fluctuations of 
space-time geometry. To describe nonsmooth space-times, a more general 
formalism was proposed in Busemann (1967), Kronheimer and Penrose 
(1967), and Pimenov (1970). In this formalism, the basic notion is kinemat ic  
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causality, an ordering relation a < b that, crudely speaking, means that a 
and b can be connected by a timelike curve. This formalism has been used 
for physical applications (see, e.g., Kreinovich, 1974, 1979; Gromov et al., 
1976). The main goal of this paper is to reformulate the axioms of  kinematic 
causality in terms of  symmetries. 

2. M A I N  IDEA 

When we think of a symmetric space-time, the most natural example is 
a homogeneous space-time, i.e., a space-time in which for every two points 
a and b, there exists a symmetry that transforms a into b. Plane (Minkowski) 
space-time is homogeneous even in a stronger sense: namely, if we have two 
pairs of points (a, b) and (a', b') that are causally similar in the sense that 
either a < b and a'  < b', or a > b and a' > b', etc., then there exists a 
symmetry that transforms a into a'  and b into b'. In other words, if 2-element 
subsets {a, b} and {a', b'} are isomorphic, then the isomorphism~ {a, b} 
-o {a', b'} can be extended. 

In general, space-times are not necessarily homogeneous, so we cannot 
formulate that every isomorphism can be extended. However, as we will see, 
some extension properties can be formulated for generic space-time models, 
and these extension properties turn out to be exactly equivalent to the axioms 
of kinematic causality formulated in Busemann (1967), Kronheimer and 
Penrose (1967), and Pimenov (1970). 

3. AXIOMS OF KINEMATIC CAUSALITY 

Definition 1 (Pimenov, 1970). An ordered set (M, <)  is called a kine- 
matic space if it satisfies the following axioms: 

Kl Va 3b, c(b < a < c). 
K2 Va, b(a < b --> 3c(a < c < b)). 
K 3 Va, b, c(a < b, c ~ 3d(a < d < b, c)). 
I(4 ~'a, b, c(a > b, c ---> qd(a > d > b, c)). 

Comment. Usually, the additional condition is imposed that a space-time 
should be directed in the following sense: 

Definition 2. A kinematic space is called directed if the following two 
conditions are true: 

DI ~/a, b 3c(a, b < c). 
D2 Va, b 3c(a, b > c). 
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4. R E F O R M U L A T I O N  IN T E R M S  OF  S Y M M E T R Y  

Before we reformulate these conditions in terms of  symmetries, let us 
recall the definitions of  isomorphism and homomorphism of  ordered sets. 

Definition 3: 

�9 A mappingf. M---> M' between ordered sets is called a homomorphism 
if  for every a, b ~ M for which a < b we have f(a) < f(b). 

�9 A mapping f: M --> M' is called an isomorphism if  it is 1-1,  and 
both f and the inverse mapping are homomorphisms. 

Definition 4. Let n > 0 be an integer. We say that an ordered set 
(M, < )  is n-structurally homogeneous if  for every isomorphism f. S ---> S' 
between two subsets S, S' C M with n or fewer elements, and for every m 

S, there exists an element m' r S' such that a mapping f ,  extended to S 
U {m} by set t ingf ' (m) = m', is a homomorphismf ' :  S U {m} ---> S' U {m'}. 

It turns out that 3-structural homogeneity is (almost) equivalent to kine- 
matic space axioms, almost in the sense that there are (nonphysical) degenerate 
cases when they are not equivalent: 

Definition 5. We say that elements a, b o f  an ordered set M are incompati- 
ble (and denote it a II b) if  a :/: b, a g: b, and b g: a. 

Definition 6. An ordered set (M, < )  is called nondegenerate if  the 
following two conditions are satisfied: 

�9 3a, b , c ( a < c & b < c & a l l b ) .  
�9 3a, b , c ( a > c & b > c & a l l b ) .  

Comment. In the real world, both in the past and in the future there are 
pairs of  events that are not causally connected (truly simultaneous). If a 
space-time were not nondegenerate in the sense of this definition, this would 
mean that either in the past or in the future, the space-time was Newtonian 
(linearly ordered). Both cases contradict our current understanding of 
space-time. 

Theorem. A nondegenerate ordered set M is 3-structurally homogeneous 
iff M is a directed kinematic space. 

Comment. If we exclude nonphysical degenerated ordered sets, we can 
say that we have reformulated the axioms of  directed kinematic space in 
terms of  symmetries: namely, it is equivalent to 3-structural homogeneity. 
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5. P R O O F  

1. Let us first assume that (M, < )  is a nondegenerate 3-structurally 
homogeneous ordered set. We want to prove that M is a directed kine- 
matic space. 

1.I. Let us first prove K1. Let a e M. We want to prove that there exists 
a c for which a < c. Since M is nondegenerate, there exist p, q, r ~ M for 
which p < q, p < r, and q II r. So, due to 3-structural homogeneity, for S = 
{p}, S' = { a } , f ( p )  = a, and m = q, there exist an m'  and a homomorphism 

f ' :  {p, q} ---> {a, m ' }  for w h i c h f ' ( q )  = m'.  Since f '  is a homomorphism 
and p < q, we have a < m'.  Hence, we can take c = m'. Similarly, we can 
prove that there exists a b for which b < a. 

1.2. Let us now prove K2. Let a < b, and let us prove that there exists 
a c for which a < c < b. Take an arbitrary point p E M. Due to Kl, for a 
= p, there exists q > p; applying the same formula K~ to a = q, we conclude 
that there exists r > q. From r > q > p, we conclude that r > p. Let us 
now apply 3-structural homogeneity to S = {p, r}, S' = {a, b } , f ( p )  = a, 
f ( r )  = b, and m = q. Then we conclude that for some m'  ~ M, the mapping 
f ' :  {p, q, r} ---> {a, m' ,  b} for w h i c h f ' ( p )  = a , f ' ( r )  = b, a n d f ' ( q )  = m' 
is a homomorphism. From p < q < r, we conclude that a < m' < b. So, 
K2 is proven for c = m'.  

1.3. Let us now prove K 3. Let a < b and a < c. We want to show that 
there exists a d for which a < d, d < b, and d < c. To prove it, we will 
consider all possible cases of  a relationship between b and c: 

1. b = c .  
2. b < c .  
3. b > c .  
4. b II c. 

1.3.1. For b = c, K 3 directly follows from K2. 
1.3.2. For b < c, from K2, it follows that there exists a d for which 

a < d < b. Then, from d < b < c, we conclude that d < c. 
1.3.3. Similar to 1.3.2. 
1.3.4. Let us now consider the case when a < b, a < c, and b II c. Due 

to K~, there exists a b'  < a. Let us apply 3-structural homogeneity to S = 
{b', b, c}, S' = {a, b, c } , f ( b ' )  = a , f ( b )  = b , f ( c )  = c, and m = a. Then, 
there exists an m' such that the mapping f extended t o f '  by se t t ingf ' (a)  = 
m' is a homomorphism. Therefore, from b'  < a < b, c, we conclude that 
f ' ( b ' )  < f ' ( a )  < f ' ( b ) , f ' ( c ) ,  i.e., that a < m' < b, c. Therefore, we can take 
d = m ' .  

1.4. 1(4 is proven similarly to K 3. 

1.5. We have proven that M is a kinematic space. Let us now prove that 
M is directed. We will prove D1 (D2 can be proven similarly). So, a, b 
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M, and we want to find c for which a < c and b < c. Let us consider all 
possible cases of  a relationship between a and b: 

l . a = b .  
2. a < b .  
3. a > b .  
4. a II b. 

1.5.1. If a = b, then the existence of  the desired c follows from K~. 
1.5.2. Let a < b. Then, applying K~ to b, we get a c for which c > b. 

Hence, c > b > a ,  a n d c > a .  
1.5.3. Similarly to 1.5.2. 
1.5.4. Finally, let us consider the case when a II b. Since M is nondegener- 

ate, there exist p, q, and r such that q < p, r < p, and q II r. Let us now 
apply 3-structural homogeneity to S = {q, r}, S' = {a, b } , f ( q )  = a , f ( r )  = 
b, m = p. Then, we get an m' = f ' ( p )  for which from p > q, r we conclude 
that m' = f ' ( p )  > f ' ( q )  = a and similarly, that m' > b. So, we can take c 
= m t" 

2. To complete the proof of  the theorem, we must show that if M is a 
nondegenerate kinematic space, then M is 3-structurally homogeneous. In 
other words, we want to prove that for every isomorphism f :  S ---> S' between 
two subsets S, S' C M with s --< 3 elements, and for every m ~t S, there 
exists an element m' ~t S' such that a mapping f, extended to S U {m} by 
se t t ingf ' (m)  = m', is a homomorph i smf ' :  S U {m} --> S' U {m'}. Let S 
= {si . . . . .  ss}. We will consider all possible relations between m and si: 

2.1. If m II s, for all i, then we can take m' > s~, which exists due to 
KI. In this case, f '  is a homomorphism (but not an isomorphism).  

2.2. If m > si or m II si for all i, then we will take the following m': 
2.2.1. If s = 1, we take m' > s{, which exists due to Kt. 

I I 2.2.2. If  s = 2, then we take m' > Sl, s2, which exists due to Dl. 
2.2.3. If s = 3, then, due to D~, there exists p for which p > sl and p 

> s~. Applying D1 to p and s~, we get m' for which m' > p > s~, m' > 
s~, and m' > s6. 

2.3. If  m < s~ or m II s / f o r  all i, then, similarly, we can take m' for 
which m'  < si for all i. 

2.4. Let us now consider the remaining case, in which for some i, m > 
si, and for some j,  m < Sy. The total number of  such i and of such j cannot 
exceed the number of  elements in S and is therefore -<3. Hence, we have 
the following possibilities: 

2.4.1. If there is only one such i and only one such j,  then, clearly si < 
sj. Since f is an isomorphism, we have s~ < sj.  We can take m' for which 
s~ < m' < sj (the existence of such m' is guaranteed by K2). 
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2.4.2. If  there is one i for which si < m and two j for which m < sj, 
i.e., if  si < m < sj, Sk, then s; < s/, Sk. Hence, due to isomorphism between 

' ' ' m '  ' ' S and S',  si < s], Sk, and we can take m'  for which si < < s j ,  Sk, whose 
existence is guaranteed by K 3. 

2.4.3. Similarly, if there are two i's and one j ,  we can use K4. 
In all cases, 3-structural homogeneity is proven. QED 
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